
pair of equilibria "from air." They can form from an unstable equilibrium as a result of 
bifurcation of the limit cycle. Finally, they can also occur in the case of bilateral bi- 
furcation, associated with an exchange of stability between two equilibria - one inside the 
invariant subspace and one outside it. 
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USE OF A THREE-COMPONENT MODEL TO COMPUTE GAS SUSPENSION FLOW 

AND RAREFIED FLOW OVER BODIES 

N. Zh. Dzhaichibekov and S. K. Matveev UDC 533.6.01 

A 4-component model to describe flow of a suspension (gas with solid particles) over 
bodies is proposed in [i]. The suspension is a mixture of four components: carrier gas 
and three kinds of particles, which do not collide with incident s particles, orderly moving 
reflected r particles, and randomly moving t particles. It is postulated that any two col- 
liding particles (only pair collisions are considered) occur in type t. The particles are 
assumed to be identical spheres whose diameter d o is much less than the characteristic body 
dimension, while the density P0 is much larger than that of the gas. The velocity distribu- 
tion of the t particles is assumed to be nearly Maxwellian, and for the t component we use 
certain results of kinetic theory obtained for a gas consisting of spherical molecules. 
Here we neglect the influence of resistance of the carrier gas and the possible inelasticity 
of collisions on the form of the formulas for flux of mass, momentum, and energy. These 
factors are accounted for in computing the kinetic energy of random motion of particles Ut, 
determined from the balance equation, which has terms describing dissipation of this energy 
due to the above causes. 

The hypotheses listed, described in detail in [i], lack a rigorous basis, but with them 
we can construct a rather simple suspension model accounting for random motion of particles, 
and correctly describing the screening influence of reflected particles, as shown by compar- 
ing the computations of [2] with experimental data [3]. 
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The practical form of this model is very complex. However, in some cases there is no 
gain in using the model in the full volume, and the random motion of particles can be ac- 
counted for in simple models of the medium. For example, [4] solved the problem of flow 
over a sphere, the fluid being a suspension based on a 3-component model, where the r and t 
components were combined. This condition holds, for example, when the body surface has 
roughness comparable with particle dimensions. 

In this paper we consider the case where one neglects the influence of the gas 
motion. These conditions are achieved in experiments where the velocity relaxation 
of the particles is much larger than the characteristic body length [3, 5], and the 
be considered as flow of solid particles (without allowing for the carrier). If we assume 
that the gas of t particles is inviscid and does not conduct heat, then the balance equa- 
tions can be written in the following form: 

on the 
length 
flow can 

Opi/Ot -6 d i v  (p iv i )  = ,]i (i, = s, r, t);  

ptOvt/Ot -6 91(vt 'V)vt  = - -Vpt  --  J~(vs - -  vt) - -  J~(vr - -  vt); 

ptOUt/Ot + 9t (v t -v)  Ut = -- Pl div vt -- JtUt - -  J~ (vs -- vt)~/2 - -  

- -  v ~ I - -  ST (vr vt)~/2 - -  ~1 (X~, < ~,) + 51 <v~5 + I~t < v ~ 5 ) / 4  - -  AI~ 

(where Pi, vi are the density and the velocity of the corresponding components, and Pt is 
the pressureoflthe randomly moving particles). The intensity of mass transfer between com- 
ponents of the mixture Ji is determined in accordance with the assumed rule for colliding 
particles entering type t: 

J t  ---- - - J ~  - -  Jr ,  Y~ ---- - - I ~ r  - -  I~t, J~ ---- - - I r ~  - -  Ir t ,  

I i j  = 6pipj (vii >/(podo). 

Here <vij> is the mean magnitude of relative velocity of the colliding particles; and Att 

is the dissipation of energy of random motion of t particles due to incomplete elasticity 
of collisions between them, evaluated from the formula 

A,, = 320Nu"/V( V do,Oo), 

where N is a coefficient characterizing the elasticity of the particles (n = 0 is absolutely 
elastic, and q = 1 is absolutely inelastic). The terms with the factor q in the last equa- 
tion describe the conversion of kinetic energy of the particles into heat, and <vij2> is the 

mean square relative velocity of colliding particles. 

The pressure of the gas of t particles is found from the equation of state 

pt  = (• -- t)ptU~ 

( •  = 5 / 3  f o r  n o n r o t a t i n g  p a r t i c l e s  o r  x t = 4 / 3 ,  i f  we a c c o u n t  f o r  t h e i r  r andom r o t a t i o n ) .  
To determine <vij> and <vij2> we use kinetic theory formulas as for a gas of solid spheres, 

and q is found empirically. Equations for vs and v~ are not required, since the velocities 
of the s and r particles along the trajectory do not change in the conditions examined. 

Using this model we computed flow of solid particles over a sphere. The law of parti- 
cle reflection from the surface was assumed to be specular (this corresponds to the assump- 
tion of an inviscid gas of t particles), and here the s particles transfer to type r, and 
for the t-particle gas the impermeability condition holds at the surface. 

If we write the reduced equations in dimensionless form, referring the particle den- 
sity to Ps ~ (the subscript ~ denotes parameters at infinity), the velocities to u s~ (u s is 
the component of vs on the Ox axis, which is directed along the symmetry axis), the pressure 
to Ps~Us =2, and we take the sphere radius as the characteristic dimension (here the form of 
the equations is retained), then the problem will depend only on N, • and Kn = d0/(6a s ~), 
where a s~ = Psi/P0 is the volume density of s particles. For example, the collision terms 
will have the form 
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Is t  = PsPt (vs,)/Kn, Ir t  = P~Pt (vr~ >/Kn, 

A r t =  16qp~U~/Z / (3] /6 -~Kn) .  

Here Kn is the analog of the Knudsen number in rarefied gas dynamics. The case considered, 
where there is no random particle motion in the undisturbed stream (Pt ~ = 0) is analogous 
to limiting hypersonic flow (M § ~) of gas over a body, and therefore the analog of Mach 
number does not appear in the list of governing parameters. 

The flow over a sphere was computed by the Godunov method [6]. Ten mesh cells were fit 
to the shock layer thickness, achieving an accuracy sufficient for the qualitative analysis 
performed below. 

Figure 1 shows curves of the fall of the s-particle density as we draw near the sphere 
surface for various values of Kn (the Ox axis is directed from the stagnation point against 
the main flow). Here and below we assume q = 0, • = 5/3. The range of Kn examined corre- 
sponds to the transition regime from flow of particles fully random ahead of the body to 
flow of individual particles similar to the transition regime in rarefied gas dynamics~ For 
large Kn the particle density of the main flow varies only a little as one approaches the 
body surface. But as Kn is reduced still further the s particles reach the surface, and 
this is associated with an increased frequency of collisions between particles. For example, 
for Kn = 0.i the s particles practically do not reach the surface. This value can be con- 
sidered as a limit, below which there is a flow regime with a dense screening layer of re- 
flected particles ahead of the body. In such a gas of t particles the pressure near the 
body is greater than for Kn > 0.i (Fig. 2). The zone of propagation of random particles is 
located immediately adjacent to the body, forming some kind of shock layer. With increase 
of Kn the frequency of particle collisions decreases, the shock layer becomes thicker, and 
the pressure of t particles near the surface drops. 

Figure 3 shows distribution curves of t-particle density on the sphere surface from the 
stagnation point to the mid-section for corresponding values of Kn. For all the regimes 
there is typically a high density of t particles near the stagnation point. 

Figure 4 shows a curve of dependence of the drag coefficient c x on Kn, where c x is com- 
puted from the total momentum of s and t particles~ As Kn increases c x + 2, which corre- 
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sponds to the case where all the s particles reach the surface without collision, and for 
Kn + 0 the result is close to c x = 0.88, the value given by the modified Newtonian theory 
for M § ~. 

Qualitatively flow of elastic particles over a sphere is close to flow of a rarefied 
gas over a sphere, and with the model adopted we can compute the flow for Kn corresponding 
to the transition regime. This gives a basis to expect that the three-component model pre- 
sented can be used to compute approximately the flow of a rarefied gas over bodies in the 
transition regime. To do this we need to use more realistic laws for the interaction of 
particles with the surface and to compute the viscosity of the t component. In addition, 
in order to be able to vary the Mach number we must introduce random motion of particles in 
the unperturbed flow, since in the model presented the flow of s particles corresponds to 
the limiting hypersonic case of M § ~. 

LITERATURE CITED 

i. S. K. Matveev, "Mathematical description of flow of gas suspension over bodies, account- 
ing for the influence of reflected particles," in: Gasdynamics and Heat Transfer: 
Intercollegiate Symposium, Leningrad State Univ., No. 7 (1982). 

2. N. Zh. Dzhaichibekov and S. K. Matveev, "Computation of flow of solid particles over 
bodies," Vestn. Leningr. Gos. Univ., Mat., Mekh., Astron., No. 1 (1986). 

3. B. A. Balanin, "Influence of reflected particles on mass removal in two-phase flow over 
a body," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1984). 

4. N. Zh. Dzhaichibekov and S. K. Matveev, "Computation of flow of a suspension over a 
sphere, based on a three-component model of the two-phase medium," Vestn. Leningr. Gos. 
Univ., Mat., Mekh., Astron., No. 22 (1985). 

5. B. A. Balanin and V. A. Lashkov, "Drag of a planar wedge in two-phase flow," Izv. Akad. 
Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1982). 

6. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimen- 
sional Problems in Gasdynamics [in Russian], Nauka, Moscow (1976). 

NONSELF-SIMILAR JET OF A NON-NEWTONIAN LIQUID 

A. V. Soldatkin UDC 532.526 

The results of an analysis of the propagation of a two-dimensional submerged jet of a 
non-Newtonian liquid over the entire zone of its development are given within the framework 
of the boundary theory. 

Jet flow is encountered in many technological applications. The pressing problem of 
analyzing non-Newtonian jet flow is created, in particular, by the broadening of the scope 
of application of polymers. Moreover, one must not forget the analogy between a turbulent 
flow and a non-Newtonian liquid with changes in the integral hydrodynamic parameters. 

A self-similar solution was obtained earlier for a two-dimensional jet of a non-New- 
tonian liquid [I]. We shall investigate here the development of a two-dimensional jet of a 
non-Newtonian liquid throughout the entire region of its propagation by means of numerical 
calculations, using the method of local similarity. The Ostwald-de Ville model is used for 
approximating the flow rheology. Practical application of this model is justified in many 
cases of actual flow, for instance, polymer flow. 

The initial equations of momentum transport and continuity of the submerged two-dimen- 
sional jet of a non-Newtonian liquid are given by 
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